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My perspective on estimands, identification and estimation
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Identification

Plausible required

assumptions

Estimation
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“Let data speak”

Gain efficiency
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Conditional versus unconditional estimands

Unconditional Conditional

Estimand Model-free Often model-based
Single number Surface

Interpretation Simple (?) interpre-
tation.

More comprehensive
understanding of
individual treatment
effect

Drug approval
decisions

Only if target po-
pulation is similar
to the RCT popula-
tion.

More transportable.
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Randomized trials with time-to-event endpoints

Logrank test is gold standard.

Cox proportional hazards model also often used, allows to
adjust for covariates (denoted by L).

Usually pre-specified.

Censoring

Changing the adjustment set changes our censoring assumption!

Logrank test: censoring is (statistically) independent of
survival time

Cox model adjusting for L: censoring is independent of
survival time, given treatment A and baseline covariate L
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Adjustment set matters

Censoring

Changing the adjustment set changes our censoring assumption!

In practice, Cox model is often pre-specified.

This raises concerns about:

Censoring assumption: Can we assume non-informative
censoring conditional on the variables in our model?

Model misspecification

Variable selection procedures can help in choosing a model
(with the right variables)!

6 / 22



Adjustment set matters

Censoring

Changing the adjustment set changes our censoring assumption!

In practice, Cox model is often pre-specified.

This raises concerns about:

Censoring assumption: Can we assume non-informative
censoring conditional on the variables in our model?

Model misspecification

Variable selection procedures can help in choosing a model
(with the right variables)!

6 / 22



Adjustment set matters

Censoring

Changing the adjustment set changes our censoring assumption!

In practice, Cox model is often pre-specified.

This raises concerns about:

Censoring assumption: Can we assume non-informative
censoring conditional on the variables in our model?

Model misspecification

Variable selection procedures can help in choosing a model
(with the right variables)!

6 / 22



Adjustment set matters

Censoring

Changing the adjustment set changes our censoring assumption!

In practice, Cox model is often pre-specified.

This raises concerns about:

Censoring assumption: Can we assume non-informative
censoring conditional on the variables in our model?

Model misspecification

Variable selection procedures can help in choosing a model
(with the right variables)!

6 / 22



Adjustment set matters

Censoring

Changing the adjustment set changes our censoring assumption!

In practice, Cox model is often pre-specified.

This raises concerns about:

Censoring assumption: Can we assume non-informative
censoring conditional on the variables in our model?

Model misspecification

Variable selection procedures can help in choosing a model
(with the right variables)!

6 / 22



Data-adaptive methods

Consider the hazard function for the Cox PH model

λ{t|A, L} = λ0(t) exp {αA+ βL} .

Data adaptive methods decide on reporting the p-value for
the null hypothesis that α = 0 in

λ{t|A, L} = λ0(t) exp {αA+ βL}

or the p-value for the null hypothesis that α0 = 0 in

λ{t|A} = λr
0(t) exp {α0A}

One common strategy: adjust for L iff significantly associated
with outcome, conditional on exposure (e.g., at the 5% level)
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Censoring

Not picking up certain variables is a consequence of large
Type II errors

Suppose L has a moderate effect on outcome, but a strong
effect on censoring

Because censoring implies information loss and may even
reduce variation in L in the risk set, variable selection in the
outcome model will rarely pick up L when fitting

λ{t|A, L} = λ0(t) exp {αA+ βL} .

Upon removing L from the model, bias induced by informative
censoring can result in highly inflated Type I errors
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Impact of Variable Selection

Our “hesitation” whether or not to adjust for L translates into
a complex mixture distribution of the test statistic

Z̃α =

{
Zα if adjusted for L
Zα0 if not adjusted for L,
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Impact of Variable Selection

Results from the test statistic jumping back and forth between
Zα and Zα0

distribution of the latter might not be centered at zero

This creates bias and inefficiency, and invalidates standard
inference.
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Simulation: Test for Treatment Effect in RCT

Results obtained by post-Lasso

n = 400; p = 30;A
d
= Ber(0.5); L

d
= N(0, I)

T
d
= exp(λT ), with λT = exp(b · νTL) and νT = (1, 1/2, . . . , 1/9, 1/10, 011, . . . , 030)

′

C
d
= exp(λC ), with λC = exp(γ1 · A+ g · νCL) and
νC = (1, 1/2, . . . , 1/5, 1, 1/2, . . . , 1/5, 011, . . . , 030)

′
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How to account for censoring?

For testing the null hypothesis of no treatment effect,
we first perform a two stage selection procedure (e.g., by
fitting two separate models using Lasso):

1 The usual Cox model for survival time T , and

2 a Cox model for censoring time C ,

both on exposure A and baseline covariates L.

Refit the Cox model for survival time, adjusting for covariates
selected in either step:

λ{t | A, L} = λu
0(t)e

αuA+β′
uLu .

Perform inference on αu by conventional methods, based on
robust SE (obtained via standard statistical software).
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Simulation: Test for Treatment Effect in RCT

Logrank Post-Lasso Poor Man’s Method
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My perspective on estimands, identification and estimation

Estimand

((((((hhhhhhModel-free

Identification

Non-informative
censoring

conditional on L

Estimation

Double selection
using Lasso
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Outline

1 Inference for the conditional hazard ratio

2 Can we go model-free?

3 Summary
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The proportional hazards assumption

Hazards have been argued to be non-proportional in many
settings.

(Stensrud and Hernán, 2020)

What are we estimating in the Cox model when the proportional
hazards assumption fails?
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Changing perspective

We have defined our estimand as a parameter in a model.

When the model is wrong:

No good understanding of what the partial likelihood
estimator converges to.
What we infer depends on the estimator we use.
The target of the standard estimator depends on the censoring
distribution. (Struthers and Kalbfleisch, 1986; Whitney et al., 2019)

This may not be of interest!

This highlights the benefits of choosing an estimand in a
model-free way.

The estimand may coincide with the model parameter when
assumptions hold...

...but otherwise still captures the scientific question.

(van der Laan and Rose, 2011; Vansteelandt and Dukes, 2020)

17 / 22



Changing perspective

We have defined our estimand as a parameter in a model.

When the model is wrong:

No good understanding of what the partial likelihood
estimator converges to.
What we infer depends on the estimator we use.
The target of the standard estimator depends on the censoring
distribution. (Struthers and Kalbfleisch, 1986; Whitney et al., 2019)

This may not be of interest!

This highlights the benefits of choosing an estimand in a
model-free way.

The estimand may coincide with the model parameter when
assumptions hold...

...but otherwise still captures the scientific question.

(van der Laan and Rose, 2011; Vansteelandt and Dukes, 2020)

17 / 22



Changing perspective

We have defined our estimand as a parameter in a model.

When the model is wrong:

No good understanding of what the partial likelihood
estimator converges to.
What we infer depends on the estimator we use.
The target of the standard estimator depends on the censoring
distribution. (Struthers and Kalbfleisch, 1986; Whitney et al., 2019)

This may not be of interest!

This highlights the benefits of choosing an estimand in a
model-free way.

The estimand may coincide with the model parameter when
assumptions hold...

...but otherwise still captures the scientific question.

(van der Laan and Rose, 2011; Vansteelandt and Dukes, 2020)

17 / 22



Changing perspective

We have defined our estimand as a parameter in a model.

When the model is wrong:

No good understanding of what the partial likelihood
estimator converges to.
What we infer depends on the estimator we use.
The target of the standard estimator depends on the censoring
distribution. (Struthers and Kalbfleisch, 1986; Whitney et al., 2019)

This may not be of interest!

This highlights the benefits of choosing an estimand in a
model-free way.

The estimand may coincide with the model parameter when
assumptions hold...

...but otherwise still captures the scientific question.

(van der Laan and Rose, 2011; Vansteelandt and Dukes, 2020)

17 / 22



Application to the Cox model

Reconsider the model

λ(t|A, L) = λ0(t) exp{αA+ βL}

Ideally, we want an estimand that:

reduces to the log hazard ratio α when the model is correct.

is a weighted average of (log) causal hazard ratios
when both parts of the model are wrong.
does not depend on the censoring distribution.

Such estimands now exist.

Estimation methods allow for flexible machine learning
methods.

(Whitney et al., 2019; Vansteelandt et al. 2022)
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My perspective on estimands, identification and estimation

Estimand

Model-free

Identification

Non-informative
censoring

conditional on L

Estimation

Machine learning
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Summary

We often think of conditional causal effects
as parameters in regression models.

So long as we specify our estimand in advance,
we have some freedom in letting the data choose our model,
whilst maintaining type I error/interval coverage.

Our estimand could be a regression parameter,
or (even better) defined in a model-free way.

The latter ensures that always return something
that answers the question of interest.
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Thank you for your attention!

E-mail: kelly.vanlancker@ugent.be
Website: kellyvanlancker.com

The opinions in this presentation are of the author and do not necessarily

represent those of anyone else.
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